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One-dimensional topological channels in heterostrained bilayer graphene
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The domain walls between AB- and BA-stacked gapped bilayer graphene have garnered intense interest as
they host topologically protected, valley-polarized transport channels. The introduction of a twist angle between
the bilayers and the associated formation of a moiré pattern has been the dominant method used to study
these topological channels, but heterostrain can also give rise to similar stacking domains and interfaces. Here,
we theoretically study the electronic structure of a uniaxially heterostrained bilayer graphene. We discuss the
formation and evolution of interface-localized channels in the one-dimensional moiré pattern that emerges due
to the different stacking registries between the two layers. We find that a uniform heterostrain is not sufficient to
create one-dimensional topological channels in biased bilayer graphene. Instead, using a simple model to account
for the in-plane atomic reconstruction driven by the changing stacking registry, we show that the resulting
expanded Bernal-stacked domains and sharper interfaces are required for robust topological interfaces to emerge.
These states are highly localized in the AA- or SP-stacked interface regions and exhibit differences in their layer
and sublattice distribution depending on the interface stacking. We conclude that heterostrain can be used as a
mechanism to tune the presence and distribution of topological channels in gapped bilayer graphene systems,
complementary to the field of twistronics.
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I. INTRODUCTION

Graphene was the first two-dimensional (2D) material to
be experimentally isolated, and monolayer graphene (MLG)
remains the most well-known 2D material due to a range of
unique mechanical and electronic properties [1–4]. MLG has
gapless, linear bands which form two Dirac cones, or valleys,
near the Fermi energy [5,6]. The honeycomb lattice of MLG
can be divided into two triangular sublattices (A and B), which
give rise to the pseudospin degree of freedom underpinning
exotic phenomena such as Klein tunneling [7]. Due to its
high elasticity and flexibility, it has also been suggested for
potential applications in flexible electronic devices [8], in-
cluding touch screens [9] and foldable organic light-emitting
diodes [10]. It is also the building block for more complex
multilayer structures [11], such as bilayer graphene (BLG),
which is formed from two stacked graphene layers coupled
by weak van der Waals interactions [12]. It can also be used
in heterostructures, for example, by combining graphene with
transition metal dichalcogenides [13].

BLG systems can be characterized by the relative stack-
ing between their layers. In the most favorable stacking,
the carbon atoms from one sublattice in each layer lie di-
rectly opposite the center of a hexagon in the other layer,
whereas the atoms from the remaining sublattice in each layer
lie directly opposite each other [12,14], forming so-called
“dimers.” There are two equivalent possibilities, AB and BA
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stacking, depending on which sublattices from each layer
form dimers, as shown in Figs. 1(a) and 1(b). The least favor-
able stacking possibility is AA-stacking, where the two layers
are perfectly aligned and each atom sits opposite an atom
from the same sublattice in the opposite layer, as in Figs. 1(c)
and 1(e). Between the low-energy AB and high-energy AA
extremes lie a range of stacking options which can be achieved
by varying the amount and directions by which one layer is
shifted relative to the other. The sublattice symmetric saddle
point (SP) stacking, shown in Fig. 1(d) is of interest in this
work as it occurs for shifts half way between AB and BA
stackings, and corresponds to a local energy maximum along
this direction.

The electronic properties of a BLG structure depend sen-
sitively on the stacking sequence [15]. This is shown in
Figs. 1(f) to 1(h) . For example, AB- or BA-stacked BLGs
have parabolic electronic bands, whereas the bands of AA-
stacked BLGs remain linear, as in MLG [1,16], but the two
resultant cones are split in energy. SP-stacked BLGs also have
linear bands, but the resultant cones now have relative shifts
in both energy and momentum [17]. These differently stacked
systems also behave very differently under the application
of an interlayer bias. A band gap proportional to the bias is
opened for AB/BA stackings [18], while AA- and SP-stacked
systems remain metallic [19].

The gaps opened by an interlayer bias in AB- and BA-
stacked BLGs are equal in magnitude, but are topologically
nonequivalent [20,21]. Interfaces between AB- and BA-
stacked regions in a single system are therefore of interest
as they can host topologically protected, valley-polarized
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FIG. 1. Bilayer graphene with a 4% uniform heterostrain, ap-
plied in the AC-direction to the bottom (orange) layer (L1). A
one-dimensional moiré pattern emerges due to different stacking
registries between the two layers, shown by the zoomed regions
in panels (a)–(e). The band structures for BLG systems, with and
without an interlayer bias, for uniform (f) AB-, (g) AA-, and (h)
SP-stacking registries are shown in the bottom panels.

transport channels. These appear in the band structure of
biased BLG systems as pairs of bands (in each valley)
which connect the otherwise gapped Dirac cones [20,22,23].
Interfaces between AB- and BA-stacked regions, and the
associated topological channels, can occur in a number of
systems, with the simplest example being a change in stacking
registry caused by a grain boundary in one of the layers
[24,25]. A similar effect occurs if the sign of the bias, in-
stead of the stacking registry, changes across the interface
[26–29]. AB/BA interfaces also occur when a relative twist
angle is introduced between the two layers to form twisted
bilayer graphene (tBLG). This creates a moiré pattern where
the stacking order has a periodic modulation, with alternat-
ing domains of AA, AB/BA, and SP stackings [30,31]. The
interfaces between AB and BA domains form a triangular su-
perlattice with AA-stacked vertices connected by SP-stacked
edges. The formation of localized, topological interface states
along the SP edges when a bias is applied is a topic of
huge interest recently, both theoretically [21,32–35] and
experimentally [36–39]. The localization of electronic states
in different domains can lead to correlated insulating states

and unconventional superconductivity for specific twist angles
[40–42].

Strain can also break the stacking registry and give rise
to different stacking domains and interfaces between them
[15,43–45]. A heterostrain, i.e., a difference between the
strains felt by each layer, introduces a mismatch between
the lattice constants in each layer [46]. Local compression,
stretching, or slipping of one layer can lead to the formation
of strain solitons or more complex topological defects [47,48].
A pure uniaxial heterostrain, arising from a uniaxial strain
present in only one of the layers, leads to a one-dimensional
(1D) moiré pattern [49–52]. An example is shown in the main
panel of Fig. 1, where a 4% armchair-direction uniaxial tensile
strain is present in the bottom (orange) layer, with the top
(blue) layer remaining unstrained. The resulting lattice mis-
match in this direction gives rise to an alternating, repeating
sequence of (from bottom to top in Fig. 1) AA, AB, SP, and
BA stackings. Such a situation can arise, for example, if the
strain applied to a bilayer system using a flexible substrate
does not transfer between the layer directly in contact with
the substrate to the top layer [53–55]. In a recent work [51],
we demonstrated that such a situation can arise if the energetic
penalty caused by the broken AB-stacking is less than the en-
ergy cost required to strain the top layer by the same amount.
For applied heterostrains of approximately 1% or greater, we
find that the modulated stacking case is energetically favor-
able, which suggests that such strains can be used as a tool to
tune the stacking of a BLG system.

In this work, we focus on the formation and evolution of
interface states in heterostrained BLGs. The one-dimensional
(1D) symmetry of the system gives rise to two types of in-
terface between AB and BA regions, namely, those centered
around the SP-stacked and the AA-stacked regions, as shown
in Fig. 1. In Sec. II, we introduce the tight-binding methods
used to calculate the electronic properties of general BLG
systems and a simple model to account for in-plane relax-
ations and changes in domain size and interface sharpness.
In Sec. III, we examine the band structure and distribution
of states in BLGs with a uniform heterostrain and compare
the results to what is seen for uniformly stacked AA, AB,
and SP systems. Realistic values of bias and strain do not
give clear signatures of the expected topological interface
channels, which we attribute to the relatively wide interface
regions and the relatively small AB and BA domains that
occur for a uniform heterostrain. Following this, in Sec. IV,
we use a simple model to mimic the effects of in-plane re-
laxation and the resulting variances in interface width. This
is motivated by previous studies in twisted systems, which
find that relaxation tends to minimise AA-stacked domains,
maximise AB/BA-stacked domains and sharpen SP-stacked
interfaces [33,34,47,56–68]. These structural deformations
can affect the electronic band structure and, in particular, the
formation of flat bands at specific twist angles. We find that
in-plane relaxation, of either the strained or unstrained layer,
allows for more robust topological interfaces to emerge due to
larger, gapped AB/BA domains and sharper SP and AA in-
terfaces. After discussing the structural, energetic, and band-
structure considerations, we examine the resulting topological
interfaces in more detail in Sec. V. Finally, we discuss our
findings in the context of recent experimental works and
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highlight the potential role of strain as a mechanism to tune
the presence and distribution of topological channels in BLG
systems.

II. METHODS

A. Electronic structure

To model the electronic structure of a general multilayer
graphene system with a range of different stackings, strains,
interlayer biases and/or twists, a tight-binding (TB) Hamilto-
nian of the form

Ĥ =
∑

i

εiĉ
†
i ĉi − t ( �d )

∑
〈i, j〉

(ĉ†
i ĉ j + ĉ†

j ĉi ) (1)

can be used. Here ĉ†
i and ĉ are, respectively, the creation and

annihilation operators for an electron in the pz orbital at site
i. The effect of a simple interlayer bias � can be included by
setting the onsite parameters εi = ±�

2 , with the choice of sign
determined by the layer in which site i is located. The hopping
parameter t ( �d ) depends on the distance vector �d = �Ri − �Rj

between the two sites and is written in terms of the appropriate
Slater-Koster parameters [69] as

−t ( �d ) = Vppπ (d )

[
1 −

( �d · �ez

d

)2]
+ Vppσ (d )

( �d · �ez

d

)2

,

(2)

Vppπ (d ) = V 0
ppπe

− d−a0
r0 , (3)

Vppσ (d ) = V 0
ppσ e

− d−d0
r0 . (4)

Here V 0
ppπ = −2.7 eV and V 0

ppσ = 0.48 eV are, respectively,
the nearest-neighbor in-plane and out-of-plane (dimer) trans-
fer integrals for unstrained graphene systems, a0 = 1.42 Å
and d0 = 3.35 Å are the corresponding unstrained in-plane
and out-of-plane atomic separations, r0 = 0.453 Å is a decay
length, and �ez is the unit vector in the out-of-plane z direction.
We include all hopping terms whose corresponding separation
in the xy-plane is less than a cutoff of rc = 1.82 Å. Within a
single layer, this is equivalent to a nearest-neighbor TB model
that can account for local strains up to ε ∼ 0.25. This value is
also sufficient to account for the dimer (γ1) and skew (γ3, γ4)
interlayer hoppings, up to similar levels of deformation, in
BLG systems. This type of TB model is suitable for systems
with inhomogeneous strains and stackings, as it can account
for differing bond lengths in both the in-plane and out-of-
plane directions, and has previously been applied in studies
of twisted bilayers [34,60,68,70].

The main geometry considered in this work is a BLG sheet
with a uniaxial heterostrain of 1% applied along the armchair
direction in one of the layers (L1 — the “bottom” layer),
with the other layer (L2 — the “top” layer) unstrained. In the
absence of a Poisson contraction perpendicular to the applied
strain, a regular one-dimensional moiré pattern is created.
This is shown for an exaggerated strain of 4% in Fig. 1. As the
stacking modulation does not affect periodicity in the zigzag
direction, the periodic unit cell required for calculations of
this system consists of a single chain of atoms from each layer.
We assume an initial AA-stacking, which remains unchanged

at y = 0 and therefore the stacking must return to AA at the
top of the unit cell in order to maintain periodicity in the
y-direction. This requires a total extension which is a multiple
of yu = 3a0, the width of a four-atom graphene unit cell.
If L1 contains N strained cells and has a total extension of
Myu, then L2 contains N + M unstrained cells. This restricts
calculations to rational strain values ε = M

N and requires larger
unit cells to simulate smaller strains. The unit cell for the 1%
heterostrain case discussed throughout this work corresponds
to M = 1, N = 100 and contains 804 carbon atoms. The band
structures presented in the following sections are calculated
using exact diagonalization of the corresponding Hamiltonian
matrices with the appropriate Bloch phases. As we are
largely concerned with the emergence of states confined to
x-direction interfaces, we only show bands as a function of
kx, with ky = 0.

B. Simple model of relaxation

In-plane relaxation has been shown to play a vital role
in determining the electronic properties of twisted moiré
systems [33,34,60,63,64,67], with the main effect of such
relaxation an increase in the size of AB and BA domains
at the expense of AA and SP regions. In the presence of an
interlayer bias, this affects the localization of states along
the sharper SP interfaces between gapped regions of opposite
mass. The degree to which intralayer relaxation will occur
can be simulated in a number of ways, including molecular
dynamics [33,56,59,68] or ab initio simulations [66], and the
Frenkel-Kontorova model and related continuum approaches
[34,47,60,62,71,72]. The specifics of the relaxation are also
likely to be affected by experimental conditions, such as
substrate effects and the manner in which strain is applied.
While the specifics may vary, relaxation occurs principally
to minimize the energy costs introduced by straining the
graphene lattice and breaking uniform AB-stacking registry.
Both contributions can be calculated on a per-atom basis from
ab initio simulations of uniform systems [51], allowing the
energetics of larger, nonuniform systems to be estimated by
summing over local stacking and strain costs throughout the
system. To consider how in-plane relaxations could affect our
heterostrained geometry, we employ a simple phenomeno-
logical model that allows the sharpness of the AA- and SP-
interfaces, and hence the effective width of AB/BA regions,
to be continuously tuned. In contrast to the Frenkel-Kontorova
or similar models, being able to tune the interface sharpness
with a single parameter allows for the determination of where
the transition occurs, and the examination the evolution of the
band structure at each stage. In this model, we assume that
only one layer of the system is allowed to relax. The layer
which is actually strained in experiment will depend on the
method used to apply the strain. In our heterostrained systems,
one layer is assumed to remain uniform due to its interaction
with a substrate. If strain is applied using a flexible substrate,
the in-plane relaxation should occur in the unstrained layer
[53,73–75]. However, if strain is applied to the top layer using,
for example, the tip of an atomic force microscope [76], then
we expect in-plane relaxation within this layer. We therefore
consider in-plane relaxations of both the strained and
unstrained layers independently to capture the geometries that
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FIG. 2. Comparison of the local (a) displacement, (b) strain, and
(c) stacking order in heterostrained bilayer graphene as a function
of position along the strained direction (y). The grey curve shows
the case of a uniform uniaxial strain in layer L1, whereas the orange
and purple curves correspond to “relaxed” structures with different
values of the interface smoothness parameter α.

emerge from both processes. We first consider the case where
relaxation occurs within L1, the strained layer. A uniform
y-direction strain ε = 1

N applied to L1 produces an extension
which is linearly dependent on the unstrained y-coordinate
y0,L1:

�yL1 (y0,L1) = ε y0,L1. (5)

The linear extension and uniform strain, as a function of
position, are shown by the grey curves in Figs. 2(a) and
2(b), respectively. The resultant lattice mismatch with L2
(the unstrained layer) gives rise to high-symmetry AA, AB,
SP, and BA stackings when �yL1 = 0, a0, 3

2 a0, and 2a0,
respectively, which correspond to yAA1

0,L1 = 0, yAB
0,L1 = Nyu

3 ,

ySP
0,L1 = Nyu

2 , and yBA
0,L1 = 2Nyu

3 . The choice of a rational strain
values, as discussed above, ensures that the stacking returns
to AA again at �yL1 = yu = 3a0 and yAA2

0,L1 = Nyu. (Note
that, due to periodicity, AA1 and AA2 correspond to the same
point, but it is useful to consider them separately in the context
of a finite unit cell.) The positions of these high-symmetry
stacking locations are shown by the grey curve in Fig. 2(c) and
the local stacking near them by the insets in Figs. 1(a) to 1(e).

To simulate sharper interfaces, and broader AB or BA
regions, we replace the linear extension from Eq. (5) with a
sum of sigmoid functions, �yrel.

L1 (y0,L1) = ∑
i Si − SAA1

2 , each

of the form

Si(y0,L1) = �Yi

1 + e−(y0,L1−yi
0,L1 )/(α�Yi )

, (6)

with i ∈ {AA1, SP, AA2}. These “S”-shaped functions are cen-
tered at the AA and SP interfaces [see the orange and purple
curves in Fig. 2(a)], where they locally increase the strain
[Fig. 2(b)] and sharpen the interfaces [Fig. 2(c)]. This leads
to much lower local strains, and more uniform stackings, in
the AB and BA regions. The “smoothness” or “sharpness” of
an interface is determined by the parameter α, which also sets
the local maximum value of strain at the interface. α relates
the characteristic width of an interface to the total stacking
shift (�Yi) that occurs across it. We note that the AA-interface
has twice the interlayer shift of the SP interface (�YAA = 2a0,
�YSP = a0), but that α acts as a single adjustable parameter
to allow relaxation, with similar levels of strain, in both in-
terfaces. Low values of α give sharp interfaces, with more
uniform strain returning as α is increased. However, the model
assumes that the effects of each interface are independent and
breaks down if α is increased to values where the interface
regions begin to merge. In experiment, strain solitons with
widths of 6 to 11 nm were reported on samples grown by
chemical vapor deposition (CVD) [48], whereas a recent work
on a biaxially strained bilayer system reports domain wall
solitons with widths of between 15 and 35 nm depending on
energy [77]. In our model, we can approximate the structural
width of a soliton by ∼8α�Y , which corresponds to the width
over which 96% of the stacking shift between perfect AB
and BA registries occurs. The interface regions in our work
have a width of ∼4.5 nm for SP-stacking and ∼9.1 nm for
AA-stacking for α = 4, with these values doubling for the
α = 8 cases. These are similar to widths of 5.2 nm and 12 nm
reported by continuum model simulations of similar interfaces
[47,60]. The electronic width of the soliton, determined from
the localization of interface states may vary from the structural
width, as shown later in Fig. 7.

The above approach can also be used to consider relaxation
occurring instead in the initially unstrained layer (L2), as may
be expected to occur if strain is applied to the other layer via
a flexible substrate. In this case, a uniform tensile strain is
first applied to L2 to match that in the strained layer, before a
nonuniform compressive strain is applied using the “sum-of-
sigmoids” approximation above to return the average strain
in the unstrained layer to zero. The structural and electronic
effects of both types of relaxation are discussed in detail in
Sec. IV.

III. ELECTRONIC PROPERTIES
OF HETEROSTRAINED SYSTEMS

We begin by considering the electronic structure of BLG
with a 1% strain applied to one of the layers, in the ab-
sence of either interlayer potentials or relaxation effects. The
804-atom (43-nm-wide) unit cell of this system is four times
wider than the schematic structure shown in Fig. 1, with a
minimum separation of approximately 14 nm between the
centers of the AB and BA domains. The electronic structure
of this system along the kx direction is shown in Fig. 3(a)
and reveals a complex series of subbands due to the large
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FIG. 3. (a) K-valley band structure of a BLG system with 1%
uniform heterostrain. Panels (b), (c), and (d) show the band structure
projected onto 2.0-nm-wide strips around the perfect AB-, AA-, and
SP-stacking points, respectively. Most of the states are distributed
across multiple regions, with exceptions for low-energy, high-k states
which show confinement to regions with particular stackings.

real-space unit cell and associated band-folding in reciprocal
space. The parabolic bands and semi-metallic, zero-band-gap
behavior expected for AB-stacked BLG, shown schematically
in Fig. 1(f), cannot be clearly distinguished here. Instead, a
large number of bands cross the Fermi energy near E = 0 and
give the system a metallic character. This suggests that modu-
lated stacking introduces features from the band structures of
uniformly AA [Fig. 1(g)] and SP-stacked [Fig. 1(h)] BLGs.
Unlike AB-stacking, these cases resemble the conical band
structure of MLG, but with two copies of the linear MLG cone
separated in either energy (AA), or energy and momentum
(SP).

We now explore the relationship between the band struc-
ture of the heterostrained structure and those of regularly
stacked systems in more detail. Figures 3(b) to 3(d) show
the bands from Fig. 3(a) projected onto narrow 2.0-nm strips
centered around yAB, yAA, and ySP, with the color of each
point showing the weight of the associated heterostrained
bilayer state in these regions. These plots reveal the effec-
tive band structures in the AB, AA, and SP regions of the
heterostrained BLG. Bands which are only strongly colored
in one region indicate states that are largely localized in that
region. Similarly, a strong correspondence between the bands
in each region and their bulk counterparts in Figs. 1(f) to
1(h) would indicate that bands in a region with a particular

stacking resemble those in a uniform bilayer with the same
stacking. The majority of the heterostrained systems states,
and particularly the higher-order subbands, are not localized
in this manner. Instead they have weight in multiple regions,
indicating states that are distributed across large parts of the
system and not confined to regions with a particular stacking.
These states reside in regions of kx-E common to all three
stackings, and can be viewed as hybridizations between states
with similar momentum and energy that occur in regions with
different stackings. The only significant exceptions to this
trend is for states outside the region of kx-E space spanned
by the bands of AB-stacked BLG, e.g., larger k values at low
energies. These states are highly quenched in AB regions,
preventing the hybridization of states in different regions, and
thus leading to bands that are highly localized in either AA or
SP regions. Although they have a similar spatial distribution
to that expected for topological interface states, we note that
there is no gap in this system, and that these states emerge
instead from simple confinement effects.

We now consider the effect of applying an interlayer bias
to the heterostrained system. An interlayer bias will only open
a band gap in BLG systems for certain stackings, with the
largest gap occurring for AB-stacking and no gap opened for
AA- or SP-stacked systems. This leads to a distribution of
gapped and conducting domains, and the formation of topo-
logical interface states, in systems with modulated stacking,
such as tBLG [21]. Similar behavior should emerge in het-
erostrained structures and, in particular, the AA and SP strips
separating AB and BA regions should host one-dimensional
topologically protected channels. Figure 4 shows the band
structure and projections of the system from Fig. 3 when an
interlayer bias of −200 meV is applied. We note that here the
negative potential is applied to the strained layer — a slightly
different result is obtained for the opposite case due to the
strain-induced layer asymmetry and the broken electron-hole
symmetry resulting from longer-ranged hopping terms in the
Hamiltonian. This bias is sufficient to open a clear gap for a
uniform AB-stacked structure [Fig. 1(f)], but has little qual-
itative effect on the gapless bands of AA- and SP-stacked
systems [Figs. 1(g) and 1(h)]. We note that, unlike other
one-dimensional interface cases such as grain boundaries or
sharp bias flips [24–29], the application of an interlayer bias
to the heterostrained structure, as shown in Fig. 4, does not
give rise to clearly defined topological channels. In these
other systems, an interlayer potential opens a bulk band gap
which is bridged only by pairs of chiral boundary modes
with opposite propagation directions in the K and K ′ valleys
[20]. For our system, this would correspond to a total of four
valley-protected topological modes in each valley, two each
for the interfaces along the AA and SP domains. Instead of
the clear emergence of a bulk gap and topological modes, we
instead see only minor changes when comparing Fig. 4 to the
unbiased system shown in Fig. 3.

IV. ROLE OF INTERFACE SMOOTHNESS

The absence of gap formation and topological modes in the
previous section can be explained by the continuously varying
stacking order in the system considered. This results in only
very small regions with perfect AB or BA stackings and
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FIG. 4. Similar to Fig. 3, but with an additional interlayer bias of
� = −200 meV between the layers. No clear band gap opens, even
for states in the AB-stacked region, despite a sizable band-gap open-
ing for the corresponding uniformly AB-stacked system in Fig. 1(f).

prevents the formation of a band gap. However, the continu-
ously varying stacking order is an artifact of the homogeneous
strain applied to L1, and is not necessarily representative of
realistic systems where nonuniform strain profiles are adopted
to minimize the total energy of the system [33,34,47,56–68].
We now consider the simple relaxation model from Sec. II B to
determine how in-plane relaxation could affect the electronic
properties of a biased, heterostrained BLG system. This al-
lows us to continuously adjust the interface smoothness and
redistribute the strain from the AB/BA-stacked regions to the
SP and AA interfaces. Figure 5(a) shows the evolution of
the band structure of the biased system as shown in Fig. 4
as the interface smoothness α is decreased and the interfaces
become subsequently sharper; the number of bands crossing
the Fermi energy decreases until only two pairs of crossings
remain. This is the expected number of band crossings for
a BLG system with two topological interfaces between AB-
and BA-type regions, i.e., with the formation of counterprop-
agating valley-polarized interfaces states along both the AA
and SP strips in our system [20]. The energy window in
which only these four bands are present, which we refer to as
�E4, is shown by the red shaded areas for α = 7 and α = 3
in Fig. 5(a), and increases as the interfaces become sharper.
The �E4 gap window only opens below a critical value of
α = 11, as shown by the red dashed line, and is not present
for unrelaxed or smoother interfaces. This evolution of �E4 is
shown explictly by the orange curve in Fig. 5(b), together with

FIG. 5. (a) Evolution of the band structure of the � =
−200-meV heterostrained BLG system as the AB and SP interfaces
are sharpened by inhomogeneously relaxing the strained layer. The
�E4 window, where only four band crossings are present, is show
in red. (b) �E4 magnitude for different values of interlayer bias (�)
and interface smoothness (α).

corresponding results for smaller and larger values of the
interlayer bias. The critical smoothness required to open a
nonzero �E4 and observe interface states varies with the
magnitude of the bias, with smaller biases requiring a sharper
interface to open �E4. This is consistent with the different
stacking profiles in these systems. Sharper interfaces give
rise to larger regions with nearly perfect AB or BA stacking
where a smaller bias is able to effectively quench bulk states.
Although precise AA or SP stackings still occur at the sharper
interfaces, they do not persist over wide-enough areas for the
gapless bulk-like bands associated with uniform AA- or SP-
stacked systems to emerge. While the values of � considered
here are quite large, they are still within or comparable to the
experimentally accessible range [27,78].

Figure 6 shows the energy costs (per supercell) due
to breaking uniform AB-stacking (red curves) and due to
strain (blue curves) in heterostrained systems with the re-
laxation model applied. The total energy cost is shown by
the black curve, with the corresponding energy values for a
uniformly heterostrained system (without relaxation) shown
by the square symbols. Inspired by the possible experimen-
tal processes which can result in heterostrain, we consider
two possible relaxation scenarios in Fig. 6: either [Fig. 6(a)]
the heterostrained layer or [Fig. 6(b)] the unstrained layer
relaxes under the simple model in Sec. II B. In each case,
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FIG. 6. Energy costs (per supercell) associated with breaking
AB-stacking registry (red curves) and strain (blue curves) in heteros-
trained systems. The panels show the effect of the simple relaxation
model applied to either the (a) strained or (b) unstrained layer to give
sharper interfaces. The black curves show the total energy from both
terms, and the square symbols show the corresponding values for
uniformly strained (unrelaxed) systems.

the atomic positions in the other layer are unaffected by the
relaxation. The stacking profiles and associated energy costs
are identical if either the strained [Fig. 6(a)] or unstrained
layer [Fig. 6(b)] are relaxed, with the energy costs decreasing
linearly for sharper interfaces (smaller α). In contrast, the
strain energy cost is always higher if we chose to relax the
initially unstrained layer. In this case, large portions of both
layers require strain values near 1% to maintain the stacking
order in the larger AB/BA regions found for smaller α. For
both relaxation scenarios, and for all values of α, the strain
energy cost is greater than that of the uniformly strained
system (blue squares). This is trivial if the unstrained layer
is relaxed, as the cost of the additional strain introduced by
the relaxation of this layer must be added to the cost of the
uniformly strained layer. When the strained layer is relaxed,
the strain is redistributed throughout the layer such that the
average strain in the layer is conserved. As the energy cost of
strain increases superlinearly [51], the additional energy cost
of higher strain near the interfaces is not compensated by the
reduced strain in the AB and BA domains.

Regardless of which layer is relaxed, the total energy curve
is relatively flat over a wide range of interface smoothness
values, until it increases sharply for α � 8. This is due to
the significant strain energy cost for sharper interfaces, which
becomes much larger than the energy savings due to more
preferable stacking configurations. There is a slight reduction
in the total energy, compared to the uniformly strained case
(black square symbol), if the strained (unstrained) layer is
relaxed using α � 8 (10). This is near the cutoff where �E4,
and associated topological interface states, emerge for smaller
values of bias, as shown in Fig. 5(b). However, a reason-
able energy window of order ∼100 meV in which to observe
topological states should occur for a larger interlayer bias of
� = −400 meV.

Before examining interface states in more detail, it is worth
considering additional factors which may affect strain redis-
tribution in heterostrained bilayer graphene. The relaxation
model employed here is a simplification that allows us to
examine, in a general manner, the role of interface sharpness
in such systems. Substrate effects are neglected, except under
the simplifying assumption that relaxation only occurs in one
layer of the system. The specific nature of the interaction
between the substrate, or any tips or contacts used for either
the application of strain or other measurements, may also
effect the local distribution of strain in the system. Similarly,
we do not consider the role which out-of-plane deformations
could play in reducing the total energy of heterostrained sys-
tems. Indeed, a recent work showed that such deformations
can affect flat band formation and local chemical reactivity
in this type of system [52]. The local stacking energy will
also be sensitive to modulations of the interlayer separation
introduced by such deformations [61]. Finally, we note that,
for simplicity, we only consider a single value of α within each
structure so that the local strain at the AA and SP interfaces
is the same. However, these interfaces have different local
stacking energetics, relative shifts, and widths, and so may
be able to sustain different levels of local strain. We do not
expect these additional considerations to dramatically alter
the main trends in our results. The main effect is likely to be
that these more complicated relaxed geometries could reduce
the energy costs due to strain beyond the values predicted
by our simple model, leading to an increased preference for
sharper interfaces. To conclude this section, we reemphasise
that uniform heterostrain and bias alone are not sufficient to
create one-dimensional topological channels: an accompany-
ing relaxation which sharpens the interfaces and expands the
Bernal-stacked regions is also required.

V. INTERFACE STATES

Figure 7(a) shows the band structure near the K point
of a heterostrained BLG system with the relaxation model
applied to the strained layer, with α = 9 and � = −400 meV.
From Figs. 5(b) and 6(a), these parameters are consistent
with a sizable �E4 and reasonable energetic costs. A similar
magnitude of �E4 could also be achieved for a lower bias,
as shown for � = −200 meV in Fig. 5(a), but with a much
higher energetic cost due to larger local strains near a sharper
interface. Conversely, achieving a similar magnitude of �E4

with a smoother interface would require a larger bias to be
applied between the layers.

The band structure in Fig. 7(a) shows �E4 spanned by four
dispersive bands. That these indeed correspond to interface-
localised channels is made clear by the band projections in
Figs. 7(b) to 7(d). The AB regions are gapped, whereas the
AA- and SP- interfaces each host a pair of boundary modes in
the K valley. We note that the modes at a particular interface
propagate in only a single direction for this valley, while the
corresponding modes in the K ′ valley (not shown) propagate
in the opposite direction. We further note that the K valley
modes from the two different interfaces have opposite prop-
agation directions. This is due to the opposite placements of
the AB and BA regions relative to the two interfaces. All these
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FIG. 7. (a) Band structure of a heterostrained BLG system with an interlayer bias � = −400 meV, where the interfaces are sharpened by
a relaxation with α = 9 in the strained layer. (b), (c), and (d) show the band structure projected onto AB, AA, and SP regions of the system, as
in Figs. 3 and 4. Clear topological channels are formed at the AA and SP interfaces and are marked in panels (c) and (d). The distributions of
the these states around their respective interfaces are shown in panels (e)–(g).

features are consistent with the formation of valley-protected
topological modes at the interfaces due to a change in the
valley Chern number between AB and BA regions in biased
BLG [20].

Finally, we note that there are subtle differences between
modes at AA- or SP-interfaces. First, the energy window for
observing these states is slightly different due to the onset of
higher-energy bands at different energies in the AA and SP
regions. We note that the AA interface in our system is broader
than the SP interface, as discussed in Sec. II B. This does
not seem to correspond to a wider interface state however.
Figures 7(e) to 7(h) show the projections of the correspond-
ing states in Figs. 7(c) and 7(d) onto each atom in a 20-Å
strip around the relevant interface. A slightly broader spread
is noted for the SP interface modes in Figs. 7(f) and 7(g)
compared to the AA modes in Figs. 7(e) and 7(h). There is a
more significant difference, however, in the layer (color) and
sublattice (symbol) distribution of these modes. Each of the
two AA modes [Figs. 7(e) and 7(h)] has their largest weight
exactly at the interface on one of the two layers, with both
sublattices having very similar distributions in the dominant
layer. The other layer has a smaller, sublattice-split distribu-
tion with peaks to either side of the interface. In contrast,
the SP modes [Figs. 7(f) and 7(g)] appear to have a more
symmetric distribution between both layers and sublattices.
We note that these trends are likely to be sensitive to the strain
levels at the interfaces, and may not be present if, for example,
relaxation results in different local strains at each interface.
Finally, we note that specific band features and the exact
levels of bias and relaxation required to observe a bulk gap
and topological interfaces may be sensitive to the choice of
Slater-Koster parameters used in the tight-binding model, but
we do not expect the key findings presented here to change.

VI. CONCLUSION

Twisted bilayer graphene systems and the associated moiré
superlattice have come under intense scrutiny recently due

to the emergence of flat electronic bands, strongly correlated
states, and unconventional superconductivity in this system.
However, twisting is just one way to generate a moiré su-
perlattice. In this study we use tight-binding methods to
study the formation and evolution of interface states in het-
erostrained bilayer graphene. Uniaxial heterostrain in this
system gives rise to a one-dimensional moiré pattern with
two interface types between AB and BA regions, namely,
those with an SP-stacking and those with an AA-stacking.
Although uniform heterostrain creates domain boundaries be-
tween AB- and BA- regions, as in twisted bilayer graphene
(tBLG), they are too wide to show clear signatures of topo-
logical interface channels. We demonstrate that in-plane
relaxations, which maximize AB/BA-stacked domains and
sharpen AA- and SP-stacked interfaces, are necessary for
robust one-dimensional topologically protected channels to
emerge.

By comparing the electronic band structure of a biased het-
erostrained bilayer to those of regularly stacked systems, we
identify bands that are highly localized in AA- or SP-stacked
interfaces. These bands emerge in �E4 which opens in the
AB-stacked regions with the application of an interlayer bias.
We show that the size of �E4 and the emergence of interface
states depends on how sharp the interface is as well as the
magnitude of applied bias. We show that when the AB regions
are gapped, the AA- and SP- interfaces each host a pair of
boundary modes in the K valley propagating unidirectionally.
The corresponding modes in the K ′ valley propagate in the
opposite direction. This is consistent with the formation of
valley-protected topological modes at the interfaces due to
a change in the valley Chern number between AB and BA
regions in biased BLG. Finally, unlike tBLG where only the
SP-like interfaces contribute to the network, the moiré system
generated by the application of a uniaxial strain has two dis-
tinct interface states, namely, those at the AA- and SP-stacked
interfaces. These interface states at the AA- and SP-interfaces
are not identical, with differences in the layer and sublattice
distribution of these modes. We expect the exact nature of the
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distribution of these modes to depend sensitively on the strain
levels at these interfaces.

So far we considered a pure uniaxial strain which creates
a strictly one-dimensional modulation of the stacking order.
Allowing for a biaxial strain, or a Poisson compression of
the strained layer, produces a two-dimensional moiré pattern
[77,79]. We are now investigating how this will modify the
emergent network of interface states. We expect that the chan-
nels associated with the AA-stacked interface will no longer
contribute to the network, as in tBLG, while those associated
with the SP-regions will remain. However, their configuration
is likely to be different to those in tBLG.

Heterostrained, untwisted bilayer graphene, as considered
here, is a very promising platform from which to tune the
presence and distribution of topological channels. This system
could potentially exhibit phenomena akin to those in tBLG

while circumventing some of the limitations associated with
achieving precise twist angle control [76].
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