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There are several approaches to the description of van der Waals (vdW) forces within density functional
theory. While they are generally found to improve the structural and energetic properties of those materials
dominated by weak dispersion forces, it is not known how they behave when the material is subject to an external
pressure. This could be an issue when considering the pressure-induced structural phase transitions, which are
currently attracting great attention following the discovery of an ultrahard phase formed by the compression of
graphite at room temperature. In order to model this transition, the functional must be capable of simultaneously
describing both strong covalent bonds and weak dispersion interactions as an isotropic pressure is applied. Here,
we report on the ability of several dispersion-correction functionals to describe the energetic, structural, and
elastic properties of graphite and diamond, when subjected to an isotropic pressure. Almost all of the tested
vdW corrections provide an improved description of both graphite and diamond compared to the local density
approximation. The relative error does not change significantly as pressure is applied, and in some cases even
decreases. We therefore conclude that the use of dispersion-corrected exchange-correlation functionals, which
have been neglected to date, will improve the accuracy and reliability of theoretical investigations into the
pressure-induced phase transition of graphite.
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I. INTRODUCTION

Diamond and graphite are two of the best known allotropes
of carbon. While the former is known for its extreme hardness,
making it a highly valuable industrial component in many
applications, the latter can be classified as a soft material
with uses in lubrication and pencil lead. The differing me-
chanical behavior can be related to their respective crystalline
structures. The carbon atoms in a diamond lattice are sp3

hybridized in a tetrahedral geometry. This isotropic bond-
ing configuration gives rise to an exceptional hardness. In
contrast, graphite consists of planar sheets of sp2 hybridized
carbon atoms, with relatively weak dispersion forces holding
the layers together. This anisotropic bonding means the layers
can glide easily over each other, resulting in a macroscopic
softness.

While graphite is the stable phase of carbon under normal
conditions, the free-energy difference between it and diamond
is only 30 meV [1]. Despite this, it is very difficult to convert
graphite into diamond. Temperatures greater than 1700 K
and pressures higher than 12 GPa are required to overcome
the free-energy barrier preventing the spontaneous transition.
The phase diagram of solid carbon also includes nanotubes,
fullerenes, and amorphous sp2 and sp3 bonded carbon.

Several other phases emerge upon the application of
an external pressure, including a metastable, crystalline,
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superhard, and transparent phase which is formed by the
compression of graphite at room temperature [2–8]. The exact
structure of this material is under considerable debate. Struc-
ture prediction methods, such as minima hopping, evolution-
ary algorithms, transition path sampling, and particle-swarm
optimization, have suggested several contenders, including
body-centered tetragonal C4-carbon [9], orthorhombic O-
carbon [10], W -carbon [10], Z-carbon [11], and monoclinic
M-carbon [12,13], amongst others [14–17].

Those structure prediction methods based on first-
principles density functional theory (DFT) generally employ
standard local or semilocal approximations to the exchange-
correlation energy in order to describe the electronic structure.
However, such methods are inherently unable to describe the
nonlocal dispersion interactions which dominate the inter-
layer binding of the starting material, graphite. While the
local-density approximation (LDA) gives structural parame-
ters which agree with experiment [18,19], this is a fortuitous
agreement that masks an incomplete description of the inter-
layer van der Waals (vdW) interaction [20]. The generalized
gradient approximation (GGA) fails to predict any graphite
interlayer characteristics correctly, including its interlayer
distance, binding energy, elastic constants, and phonon dis-
persions [21,22]. Thus, neither LDA nor GGA are suitable for
an accurate description of graphite under pressure.

Mao et al. showed that the room-temperature (RT) com-
pression of graphite caused approximately half of its π

bonds to convert to σ bonds, with the other half remaining
as π bonds [6]. Therefore, in order to correctly describe
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pressure-induced transitions of graphite on the atomic scale,
one needs to be capable of simultaneously describing both
strong covalent bonds (sp2 and sp3) and weak dispersion
interactions. Several functionals have been developed to im-
prove the description of dispersion interactions in layered
materials, with good results [23–31]. The effect of those
functionals developed to describe vdW binding have also
been applied to diamond and other ionic or semiconducting
solids. In the considered cases, an improved agreement with
experimental data has been found [32–38].

However, few first-principles calculations go beyond a
determination of the equilibrium properties at zero external
pressure. Yu et al. determined the structural properties of
diamond and graphite under an applied pressure using the
semiempirical correction of Grimme [39]. In this study, we
extend this investigation to determine how well more sophis-
ticated vdW-corrected functionals describe both AB-stacked
hexagonal graphite and cubic diamond under an applied pres-
sure. We determine their structural and elastic properties as
well as how the stacking sequence of the carbon layers in
graphite, namely hexagonal AB, rhombohedral ABC, and
hexagonal AA, depends on the applied pressure. As the
ultimate goal is to perform large-scale, finite-temperature
simulations of the phase transition using ab initio molecular
dynamics, it is important that a modest computational expense
is maintained. For this reason, we restrict our investigation to
six different vdW corrected functionals which are of reason-
able computational cost, and do not consider more advanced
functionals such as the many-body dispersion energy method
of Tkatchenko et al. [40,41]. The main details of the employed
functionals will be outlined in the following section.

II. THEORETICAL METHODS

A. Van der Waals functionals

We consider four different functionals which account for
the dispersion interaction via a pair-wise additive correction
to the total energy, namely, the semiempirical methods de-
veloped by Grimme (PBE+D3) [42], both with and without
Becke-Johnson (BJ) damping (PBE+D3+BJ) [43] and two
nonempirical methods developed by Tkatchenko and Schef-
fler: the standard method (PBE+TS) [44] and with the inclu-
sion of a self-consistent screening (PBE+TS+SCS) [40].

In these functionals, the total energy Etotal can be expressed
as follows:

Etotal = EKS-DFT + Edisp, (1)

where EKS-DFT is the conventional Kohn-Sham DFT energy
and Edisp is the energy correction due to the dispersion inter-
action.

For the two Grimme methods, Edisp takes the form of a
damped atom-pair-wise additive correction, such that

Edisp = −1

2

∑
i

∑
j

C6,ij

R6
ij

fdamp(Rij ), (2)

where C6,ij is the dispersion coefficient for atom pair ij which
depends on the local geometry via the coordination number of
the atoms and Rij is the distance between them. The damping
term fdamp is to ensure that the potentials do not diverge

at short distances. PBE+D3+BJ applies a correction to the
damping function of PBE+D3 to ensure the dispersion energy
approaches a constant value at small R.

The two functionals developed by Tkatchenko and Schef-
fler, on the other hand, include the dispersion interaction
as pair-wise potentials proportional to the rescaled polariz-
abilities of the free atoms. These are obtained from self-
interaction corrected time-dependent DFT calculations [44].
The updated PBE+TS+SCS functional further accounts for
electrodynamic response effects by solving the self-consistent
screening (SCS) equation of electrodynamics for a dipole field
of quantum harmonic oscillators [40].

We also consider two vdW functionals (optB86b [45] and
rev-vdW-DF2 [46]) which, rather than account for vdW inter-
actions via an additive correction to the total energy, include a
nonlocal correlation energy that encompasses the long-range
interactions. Here, the exchange correlation energy is defined
as

Exc = EGGA
x + ELDA

c + Enl
c , (3)

where EGGA
x is the GGA exchange energy and ELDA

c is the
local correlation within LDA. The remaining term, Enl

c , is
a nonlocal correlation energy based on a model response
function of interacting electron densities [47]. In the original
formulation of Dion et al., the exchange energy was that
of Perdew-Burke-Ernzerhof (revPBE) [48]. However, it was
found to consistently overestimate equilibrium separations
for the S22 benchmark set of molecular duplexes [49]. The
optB86b method of Klimeš et al. replaces revPBE with a
version of the B86b exchange functional [50] which was
optimized by fitting to the S22 data set. A substantial improve-
ment in accuracy was achieved [32,45]. We also employ the
rev-vdW-DF2 functional developed by Hamada [46] which
uses a revised B86b exchange functional together with the
nonlocal correlation functional of vdW-DF2 [51]. An im-
proved performance for a wide range of materials, including
graphite and other layered materials, was found.

However, it is not clear how transferable this category of
functionals are to systems beyond those for which they were
designed. For example, they were shown to achieve good
agreement for some systems including graphite and diamond
[32,35], but to behave poorly when applied to the intralayer
thickness of a variety of layered materials [26].

B. Computational details

Kohn-Sham DFT calculations were carried out using the
projector augmented wave method [52] as implemented in
VASP-5.3 [53–57]. Brillouin-zone integration was carried out
using the Monkhorst-Pack method [58]. Convergence tests
found that a cutoff energy of 1000 eV and a 23 × 23 × 11
k-point grid are required to describe AB-stacked graphite.
The diamond structure was converged using a 9 × 9 × 9 k-
point mesh. Structural optimizations were performed using
the conjugate-gradient algorithm until the forces smaller than
1 meV/Å were achieved.

To obtain bulk properties, the total energies were calculated
for a set of volumes corresponding to an increased isotropic
pressure ranging between 0 and 30 GPa. Energy-volume data
sets were then fitted using the Murnaghan equation of state
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TABLE I. Bulk properties of graphite and diamond at 0 GPa. MARE is defined in Eq. (5) using three descriptors for graphite (a0, c0, and
B0) and two descriptors for diamond (a0 and B0). For the case of graphite, the data are compared to the experimental data taken at 4.2 K. For
the case of diamond, the theoretical data are compared to experimental data taken from Ref. [65], which has already been corrected for thermal
expansion and zero-point motion.

Graphite Diamond

Functional a0 (Å) c0 (Å) c0/a0 B0 (GPa) MARE Functional a0 (Å) B0 (GPa) MARE

LDA 2.447 6.652 2.719 25.5 9.2 LDA 3.535 467.0 2.8
PBE+D3 2.465 6.965 2.825 23.2 12.7 PBE+D3 3.564 442.4 0.4
PBE+D3+BJ 2.465 6.745 2.736 30.4 4.7 PBE+D3+BJ 3.557 445.3 0.5
PBE+TS 2.459 6.690 2.721 53.5 17.9 PBE+TS 3.552 443.8 0.2
PBE+TS+SCS 2.462 6.707 2.725 36.1 1.4 PBE+TS+SCS 3.563 439.8 0.6
rev-vdW-DF2 2.464 6.608 2.682 44.7 9.7 rev-vdW-DF2 3.567 421.1 2.8
optB86b 2.466 6.620 2.685 33.8 1.4 optB86b 3.569 424.2 2.5

Expt. [63] (4.2 K) 2.459 6.672 2.713 34.9 Expt. [65] 3.543
Expt. [64] (RT) 2.462 6.707 2.724 34–42 Expt. [66] (RT) 3.567 443.0

(EOS):

E(V ) = E(V0) + B0V

B ′
0

(
(V0/V )B

′
0

B ′
0 − 1

+ 1

)
− B0V0

B ′
0 − 1

, (4)

which yields bulk moduli B0, equilibrium volumes V0, and
bulk modulus derivatives B ′

0. Additionally, one obtains E0 =
E(V0) as an equilibrium energy. Graphite has two independent
structural parameters: the in-plane lattice constant a0 and the
interplanar distance c0. Cubic diamond can be described with
only one independent lattice parameter, a0.

We also determine the elastic constants for both diamond
and graphite at 0 GPa, using the built-in VASP routine based
the infinitesimal deformation method [59,60]. The zero-point
energy was calculated as ZPE = h̄

2

∫
ωg(ω)dω, where g(ω)

is the vibrational density of states and ω is the frequency.
This was determined within the harmonic approximation as
implemented in the PHONOPY package [61].

III. RESULTS

As we have mentioned, the structural properties of
both graphite [23–31,62] and to a lesser extent, diamond
[32–37], have been investigated previously at ambient pres-
sure using a variety of vdW-corrected functionals. Here, we
repeat these calculations with the aim of ensuring consistency
across the range of functionals used. We then extend our
study to determine how well these functionals describe both
graphite and diamond as an isotropic external pressure is
applied.

A. Zero pressure

The ground-state structural properties of both graphite and
diamond at 0 GPa are presented in Table I for LDA and the six
considered dispersion-corrected functionals and compared to
available experimental data. In order to determine the quality
of the performance of different functionals in comparison
with experiment over a variety of different descriptors such as
lattice constants and bulk moduli, we define the mean absolute
relative error (MARE) achieved by a functional as

MARE = 100

n

n∑
t=1

∣∣∣∣ξexpt − ξtheo

ξexpt

∣∣∣∣, (5)

where n is the number of descriptors being considered, ξexpt

is the experimental value of the descriptor, and ξtheo is its
theoretical value.

We find that all of the vdW-inclusive functionals give an
improvement over LDA when considering the in-plane lattice
constant of graphite, a0: while LDA underestimates it by 0.5%
compared to the low-temperature experimental value, each of
the vdW functionals give errors of less than 0.3%.

Mounet and Marzari calculated the effects of zero-point
motion on the structural properties of graphite, and found
that the a0 lattice constant increases by 0.0074 Å [22]. In
this case, the contribution was determined using the PBE
functional and the experimental c/a ratio of graphite. How-
ever, we find that the zero-point energy varies by less than
1.3% when calculated with LDA, TS+SCS, and the MBD (at
0.17 meV/C). Similarly, Zhang et al. found that the effect of
the specific functional on the zero-point energy was negligible
when considering a database of bulk solids [38]. We find
that the vdW-corrected functionals actually increase in error
compared to LDA when the contribution of zero-point motion
is included. The error associated with the in-plane lattice
constant as determined by the LDA functional is 0.2% when
corrected for zero-point motion, while all other functionals
overestimate the a0 by up to 0.6%. Nonetheless, these errors
are relatively small and so we can conclude that all of the
considered vdW functionals describe a0 well.

Some vdW-inclusive functionals perform worse than LDA
in describing the out-of-plane lattice parameter of graphite,
c0. In particular, the PBE+D3 functional overestimates c0 by
4.4% compared to an error of 0.3% in LDA. The best perform-
ing functionals are those of Tkatchenko and Scheffler, with er-
rors of less than 0.3% (0.5%) for PBE+TS (PBE+TS+SCS).
The PBE+D3+BJ functional gives an error of 1.1%, while the
two nonlocal functionals (rev-vdW-DF2 and optB86b) both
underestimate c0 by 1% and 0.8%, respectively. If zero-point
motion is included to the extent determined by Mounet and
Marzari (3%), those functionals which underestimated the c0

lattice constant all improve with respect to experiment (i.e.,
LDA and the two nonlocal functionals) while those function-
als which overestimate the lattice constant all increase in error
by 0.3%. As a result, LDA is in fact found to fortuitously
reproduce the experimental value exactly.
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TABLE II. Elastic constants of graphite and diamond at 0 GPa. All values are in GPa. MAPE is defined in Eq. (6).

Graphite Diamond

Functional C11 C12 C13 C33 C44 C66 MAPE Functional C11 C12 C44 MAPE

LDA 1097 209 −2.4 31 5.1 444 1.5 LDA 1102 150 605 7.4
PBE+D3 1040 198 −2.4 26 3.0 421 2.6 PBE+D3 1064 132 579 1.6
PBE+D3+BJ 1095 218 −2.6 34 4.2 439 1.6 PBE+D3+BJ 1072 132 588 2.6
PBE+TS 1071 193 −7.2 66 5.5 439 2.5 PBE+TS 1075 128 588 2.1
PBE+TS+SCS 1061 194 −7.0 47 4.9 434 2.3 PBE+TS+SCS 1055 132 574 3.0
rev-vdW-DF2 1089 167 −3.7 40 5.3 461 1.0 rev-vdW-DF2 1052 128 562 4.9
optB86b 1087 166 −3.4 42 5.5 461 1.0 optB86b 1052 129 564 4.7

Expt. [67] 1109 ± 16 139 ± 36 0 ± 3 38.7 ± 7 5 ± 3 485 ± 10 Expt. [68] 1081 ± 5 125 ± 5 579 ± 2

The agreement between theory and experiment is not as
close when considering the bulk modulus. LDA fails to repro-
duce the experimental value, underestimating it by approxi-
mately 27%. PBE+D3 gives a similarly large error of 33%.
The inclusion of BJ damping reduces this error to 13%. The
PBE+TS functional, on the other hand, describes graphite
as a much harder material than experimentally found, with a
bulk modulus of 53.5 GPa, an overestimation of over 50%.
This is in agreement with previous work [24]. A dramatic
improvement occurs with the inclusion of the SCS correction,
reducing the error to only 3.4%. A similar error is achieved
with the optB86b functional. However, the rev-vdW-DF2
functional also performs poorly, with an error of 28%. If we
correct for zero-point motion, taking an increase in B0 of
approximately 1 GPa [22], the best performing functional is
that of PBE+TS+SCS with an error of only 0.6%.

In fact, the best performance across all descriptors is given
by PBE+TS+SCS and optB86b, with a MARE value of
1.4%, followed by the PBE+D3+BJ (4.7%) functional. These
three functionals remain the best performers when zero-point
corrections are taken into account.

Turning now to diamond, all functionals perform well
in the description of the bulk lattice constant. The smallest
error is again given by LDA (an underestimation of 0.2%).
The vdW-corrected functionals all overestimate the lattice
constant, but the error is never larger than 0.7% (that given
by the two nonlocal functionals.) In this case, the lattice
constant was compared to an experimental value of 3.543 Å
which has been corrected for both thermal expansion at room
temperature and zero-point motion [65].

The four C6-corrected functionals are found to reduce the
error associated with the bulk modulus of diamond compared
to LDA, from 5.4% to less than 0.7%. The bulk modulus as de-
termined with rev-vdW-DF2 and optB86b is underestimated
by approximately 4%. Taking zero-point motion into account,
which serves to reduce the bulk modulus by approximately
10 GPa at 0 K [22], the error in all of the vdW-corrected
functionals increases by 2.3%.

The results presents here for ambient pressure agree with
those presented in the literature [28–30,32,35]. Given that
a good description of graphite and diamond is required si-
multaneously, we find that the PBE+TS+SCS is the best
performing functional (with a MARE value of 1.0%), while
both PBE+D3+BJ and optB86b also perform reasonably well
(with MARE values between 1.9% and 2.6%). The large

overestimation of the c lattice constant of graphite using
PBE+D3 and the large overestimation of the graphite bulk
modulus using PBE+TS make these two functionals less
accurate, with MARE values of just under 10%, and indeed,
perform worse than LDA with a MARE of 6%. The inclusion
of zero-point motion increases the error slightly, but the
designation of PBE+TS+SCS, PBE+D3+BJ, and optB86b
as the best performing functionals is not changed.

B. Elastic properties

The elastic constants of graphite and diamond at 0 GPa as
calculated with the different dispersion corrected functionals
are presented in Table II and compared to experiment. Given
that the values of some of the elastic constants are small, we
define a different quality criterion to estimate the performance
of the considered functionals. The mean absolute percentage
error (MAPE) is defined as

MAPE = 1

n

n∑
t=1

∣∣∣∣ξexpt − ξtheo

εexpt

∣∣∣∣, (6)

where n is the number of elastic constants considered, ξexpt is
the experimental value, ξtheo is the theoretical value, and εexpt

is the reported experimental error, given by the correspond-
ing error bars. Using this definition, theoretical values lying
within the experimental error range give a MAPE between 0
and 1.

We find that the elastic constants of graphite are best
described by the two nonlocal functionals, rev-vdW-DF2 and
optB86b, which both give results within the experimental
range. The largest error is given by the PBE+D3 functional
(2.6%), followed by the two Tkatchenko-Scheffler function-
als. PBE+D3+BJ and LDA give similar errors of approxi-
mately 1.5%.

For the case of diamond, LDA unsurprisingly yields sub-
stantial disagreement with experiment, with an absolute error
of 7.4%. The best results are obtained with the C6 corrected
functionals, with errors of between 1.6% and 2.6%, while the
nonlocal functionals perform somewhat worse with errors of
almost 5%. However, these errors would represent the typical
accuracy of elastic constants calculated with DFT.

Summarizing this section, we see that the best functionals
for describing simultaneously the elastic constants of both
graphite and diamond are the two Grimme functionals with

174103-4



EFFECT OF DISPERSION CORRECTIONS ON AB … PHYSICAL REVIEW B 98, 174103 (2018)

0 5 10 15 20 25
Pressure (GPa)

5.50

6.00

6.50

7.00

c 
(Å

)

LDA
PBE+D3
PBE+D3+BJ
PBE+TS
PBE+TS+SCS
optB86b
rev-vdW-DF2
Experiment

0 5 10 15 20 25
Pressure (GPa)

-2

-1

0

1

2

3

4

5

c 
- 

c ex
p / 

c ex
p (

%
)

(a) (b)

0 5 10 15 20 25
Pressure (GPa)

2.4

2.42

2.44

2.46

a 
(Å

)

0 5 10 15 20 25
Pressure (GPa)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a 
- 

a ex
p / 

a ex
p (

%
)

)d()c(

FIG. 1. (a) Out-of-plane c lattice parameter of graphite as cal-
culated with different vdW-corrected functionals as a function of
pressure and compared to experimental data (black stars). (b) The rel-
ative deviation of the calculated c values from the experimental data.
(c) In-plane a lattice parameter of graphite compared to experiment.
The experimental data are taken from Ref. [64]. (d) The relative
deviation of the calculated a values from the experimental data. Note
that in all cases the theoretical data have been corrected for thermal
expansion and zero-point motion, as described in the text.

a combined MARE value of just over 2%. However, the
other vdW-corrected functionals also perform well, with an
error of no more than 3%, which is an improvement over the
LDA error. These results are in good agreement with other
theoretical works [22,69].

C. Pressure dependence

We now consider how these functionals behave when an
external pressure is applied to both graphite and diamond.
Figures 1(a) and 1(b) show how the c lattice constant of
graphite behaves as the external pressure is increased from
0 to 25 GPa for each of the considered functionals. This is then
compared to the experimental data obtained by Wang et al. at
room temperature [8]. In order to ensure a fair comparison, the
theoretical data have been shifted to take zero-point motion
and thermal expansion into account. The out-of-plane linear
thermal expansion coefficient is 27 × 10−6 K−1 at room
temperature [70]. This corresponds to an increase in the c

lattice constant of 0.05 Å as the temperature is raised to

room temperature. The expansion of the c lattice due to zero
point motion is 0.02 Å [22]. As a result, the 0 K results are
shifted by 0.07 Å and the results compared to the experimental
data. Likewise, the theoretical data for the a lattice constant
have been shifted by 0.0064 Å, taking the linear expansion
coefficient of −1.5 × 10−6 K−1 at room temperature [70], as
well as a zero-point expansion of 0.02 Å [22].

Note that above 19.2 GPa the experimental data showed ev-
idence of a phase transition which was completed by 37 GPa.
Due to the free-energy barrier, our theoretical calculations
cannot reproduce this phase transition. Thus, beyond approx-
imately 19 GPa we do not expect good agreement between
the computational and experimental lattice constants. In this
pressure range, experiment shows a decrease in both the a and
c lattice parameters compared to the calculated values.

All of the functionals show the c lattice parameter of
graphite to reduce by approximately 1.3 Å when the pressure
is increased from 0 to 25 GPa. This corresponds to a reduction
in the interlayer distance of 0.65 Å.

As stated earlier, when corrected for zero-point motion,
LDA predicts the c lattice constant exactly at 0 GPa. However,
the error increases with the application of pressure to just
under 1% across a wide pressure window [Fig. 1(b)]. The
best performance is achieved by the two nonlocal functionals
which behave very similarly and give an error of no more than
0.2% across the whole pressure range. While PBE+D3+BJ
gives an error of 1.7% at 0 GPa, this decreases to under
1% at higher pressures. The error of the two TS functionals
initially increases with the application of pressure from about
1% to a maximum of more than 3.1% (2.3%) for PBE+TS
(PBE+TS+SCS) at 6 GPa before decreasing. The PBE+D3
functional, while significantly overestimating the c lattice
constant at 0 GPa, performs better at higher pressures, reduc-
ing in error to about 2.5%.

One thing to note is that the thermal expansion and zero-
point motion corrections have been applied uniformly across
all pressures. However, it is possible that the effects of thermal
expansion become less significant as the pressure is increased.
Given the small errors involved here, it is likely that this would
serve to reduce the error given by the vdW functionals at
higher pressure.

All of the considered functionals reproduce the experi-
mental in-plane lattice constant of graphite, with errors of no
more than 0.5% for all functionals between 0 and 19 GPa.
This can be seen in Figs. 1(c) and 1(d). In this case, the two
TS functionals, which overestimate the experimental lattice
constant by about 0.2% at all investigated pressures, perform
slightly better than other functionals.

Next, we determine how the lattice constant of diamond
behaves as a function of applied pressure. This is shown
in Fig. 2 and compared to available experimental data [64],
which was recorded at room temperature. Therefore, the
theoretically determined lattice constant was increased by
0.024 Å, including a zero-point expansion of 0.013 Å [22].

The lattice constant of diamond is found to decrease
linearly with the applied pressure. The errors achieved by
each functional at ambient pressure remain approximately
constant across the whole pressure window considered. LDA
performs quite well, underestimating a by 0.24%, which
decreases slightly with the applied pressure. The PBE+TS
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FIG. 2. (a) Lattice constant of diamond calculated with different
vdW-corrected functionals as a function of pressure and compared to
experimental data taken from Ref. [66]. (b) The corresponding error
of the vdW functionals compared to the experimental data. Note that
the theoretical data have been corrected for thermal expansion and
zero-point motion, as described in the text.

functional also performs well, overestimating the lattice con-
stant by 0.23%. The SCS correction to this functional in-
creases the error to about 0.5%, a comparable error to
PBE+D3. The worst performance is achieved by the two
nonlocal functionals with errors of approximately 0.7%. In
fact, none of the functionals considered in this study give an
error of greater than 1% for the lattice constant of diamond.

We can therefore conclude that the application of an ex-
ternal isotropic pressure does not adversely affect the error
achieved by the vdW functionals at ambient pressure.

D. Interlayer binding

In graphite, the dispersion interactions affect not only the
interlayer distance and binding energies but also the layer
stacking sequence. The ground-state structure of graphite is
generally accepted to be hexagonal with AB-type stacking
and space group P 63/mmc. However, the energy differences
between this state and other graphite structures containing
different stacking sequences are, in some cases, very small.
Rhombohedral graphite, with a stacking sequence of ABC, is
often experimentally reported as planar defects or nanograins
embedded in hexagonal graphite [71,72], and is relatively
abundant in natural samples. Furthermore, as different stack-
ing sequences are believed to play an important role as tran-
sition states during pressure-induced phase transformations
[73], the relative energetics of these graphite polymorphs have
attracted increased interest. As such, it is important to deter-
mine how well the various dispersion-corrected functionals
behave in calculating this quantity.

The interlayer binding energies of graphite in the AB,
AA, and ABC stackings are reported in Table III for each of
the vdW functionals. For completeness, we now include the
PBE+MBD functional, which includes nonlocal many-body
dispersion (MBD) [33,41]. This functional has previously
been found to give a very accurate description of graphite
[29]. The interlayer binding energy of the stacking E

stacking
b

TABLE III. Graphite interlayer binding energy, Eb, as calculated
with different vdW-corrected functionals for three stacking arrange-
ments of the graphene layers, compared with the value determined
by the random phase approximation and some reported experimental
data. �E is the energy of a particular stacking with respect to the
AB-stacking configuration, defined in Eq. (8). All values are given in
meV per atom.

AB AA ABC

Functional Eb Eb �E Eb �E

LDA 23 14 −9 23 <1
PBE+D3 48 42 −6 48 <1
PBE+D3+BJ 53 44 −9 53 <1
PBE+TS 83 69 −13 83 <1
PBE+TS+SCS 55 45 −10 55 <1
rev-vdW-DF2 59 47 −11 58 <1
optB86b 70 58 −11 70 <1
PBE+MBD 49 41 −9 49 <1
RPA (Ref. [74]) 48 −10

Expt. (Ref. [76]) 52 ± 5
Expt. (Ref. [77]) 31 ± 2

is calculated as

E
stacking
b = −E

stacking
tot − NEgraphene

nN
, (7)

where E
stacking
tot is the total energy of graphite in a particular

stacking sequence, Egraphene is the total energy of a isolated
graphene sheet, N is the number of layers in the unit cell of
each stacking (e.g., N = 2 for AB, N = 3 for ABC), and n

is the number of atoms in each layer. In addition, we report
the energy difference between the chosen stacking and the
ground-state AB structure �E. This is defined as

�E = E
stacking
b − E

ABstacking
b . (8)

The values calculated in this work are compared with avail-
able experimental data and with the random phase approxi-
mation (RPA) values, taken from Ref. [74]. Compared to the
RPA values, the PBE+MBD functional method performs best
with an MARE value of 6.0%, while the PBE+TS+SCS and
PBE+D3+BJ functionals lead to a slight increase of the error
to 7.3% and 10.2%, respectively. The PBE+TS functional
without self-consistent screening performs the worst with an
error of over 50%. These results are in good agreement with
the reported structural and bulk properties since larger binding
energies are associated with larger bulk moduli and smaller
c/a ratios.

We find that the energy difference between the ABC and
the AB stackings are approximately 0.1 meV. While such
small values are in agreement with experiment, which reports
stacking fault energies of 0.09 meV/atom [75], the exact
value is below the accuracy of our DFT methods. All of
the considered functionals predict that AB-stacked graphite
has a lower energy than ABC-stacked graphite, apart from
PBE+TS+SCS which predicts that ABC is the ground-state
structure. Given that the two stackings are so close in energy, it
is common that DFT methods fail to predict comprehensively
the correct ground state. Other factors, not considered here,
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FIG. 3. Enthalpy difference between (a) AB- and ABC-stacked
graphite and (b) AB and AA graphite as a function of pressure. The
enthalpy difference is given in units of meV per atom.

may also have to be taken into account, including the role of
phonons.

It is possible that the stacking sequence of graphite could
be influenced by an applied pressure, which in turn could be
part of the phase transition pathway. To address this issue,
we determined the difference in enthalpy between AB- and
both ABC- and AA-stacked graphite as a function of ap-
plied pressure with the three functionals that perform best in
describing graphite, namely, PBE+D3+BJ, PBS+TS+SCS,
and optB86b, as well as PBE+MBD and LDA. The results are
shown in Fig. 3. We find that while the application of pressure
stabilizes AB-stacked graphite with respect to AA-stacked
graphite, at a rate of approximately −2.2 meV/GPa, the en-
thalpy difference between AB and ABC graphite remains
minuscule, with differences of no more than 1.5 meV over the
entire pressure range considered. All four functionals behave
similarly, with the greatest (least) stabilization achieved by the
LDA (PBE+TS+SCS) functional.

IV. CONCLUSION

We investigated the ability of six different dispersion-
corrected exchange correlation functionals to describe the
structural and energetic properties of graphite and diamond as
a function of an applied pressure. We included four function-
als which include vdW interactions as an additive correction

together with two functionals which include a nonlocal corre-
lation term.

When considering the lattice constants, bulk moduli and
elastic constants of both graphite and diamond, as well as the
interlayer binding energy of graphite, we find that the best
performing functional across all descriptors is PBE+TS+SCS
with a combined error of just 2.2%. This is followed by
the semiempirical PBE+D3+BJ functional with an error of
4.3%. The two nonlocal functionals give a combined error of
between 6% and 7%. Primarily due to the significant overesti-
mation of the c lattice constant of graphite, the combined error
of PBE+D3 is high, at 8.6%. The overestimation of both the
graphite bulk modulus and interlayer binding energy means
that the PBE+TS functional performs overall worse that LDA,
with a combined mean absolute error of 13.7% compared to
9.2%.

This is the case at P = 0 GPa, and the relative error to
experiment does not change significantly upon the application
of an isotropic pressure when considering the structural
parameters. This is particularly the case for diamond, and in
fact the error decreases slightly when compressing graphite.

Finally, we find that an isotropic pressure stabilizes AB-
stacked graphite relative to AA-stacked graphite at a rate
of −2.2 meV/GPa over the pressure range considered. In
contrast, the relative energy of AB- and ABC-stacked graphite
is in the range of 1.5 meV over the entire pressure range
considered, regardless of the dispersion correction used.
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[23] T. Bučko, J. Hafner, S. Lebegue, and J. G. Angyán, Improved
description of the structure of molecular and layered crystals:
ab initio DFT calculations with van der Waals corrections,
J. Phys. Chem. A 114, 11814 (2010).
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